
National Aeronautics and Space Administration 

www.nasa.gov  

Shared-Memory Parallelism and 
OpenMP!

NAS Webinar!
August 22, 2012!

NASA Advanced Supercomputing Division !



NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Outline!

•  Shared-memory parallelism!
•  What is OpenMP?!
•  OpenMP major components!
-  Fork-join execution model!
-  Worksharing constructs!
-  Data sharing!
-  Synchronization primitives!

•  Use of OpenMP!
•  Hybrid MPI + OpenMP model!
•  OpenMP tasking!
•  Performance considerations!
•  Future OpenMP extensions!

2 

Topics for the next webinar 



NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Shared-Memory Parallelism!

•  Many modern parallel computers !
-  A cluster of shared-memory nodes with multicore CPUs!

•  Size of shared-memory nodes getting larger!
-  Increased number of cores (4, 8, 16 …)!
-  Many cores in new types of systems (such as GPUs, Intel MIC)!

•  Shared-memory programming!
-  Access to the same, globally shared, address space!
-  No need for explicit data communication!
-  Possibility for maintaining sequential  

equivalency !

3 

NASA’s Pleiades Supercomputer 



NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Shared-Memory Architecture!

•  Multiple processing units accessing global shared memory 
using a single address space!

4 

•  Shared-memory systems easier to program !
-  User responsible for synchronization of processors for correct data 

access and modification!
•  Scaling to large number of processors can be an issue!

Memory Network 

Shared Memory 

P P P P 

Shared-Memory Network 

P P P P 

M M M M

UMA: Uniform Memory Access !
–  “equidistant” access from all processors!

NUMA: Non-Uniform Memory Access !
–  local memory versus remote memory!



NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

C

L2 

C

L2 

C

L2 

L3 

Memory 
Controller 

Network 
Interface 

Socket 
Interconnect 

Local 
Memory 

C

L2 

C

L2 

C

L2 

L3 

Memory 
Controller 

Network 
Interface 

Local 
Memory 

A Typical Supercomputer!

5 

Multiple processing cores 
in a socket 

UMA shared memory for 
cores within a socket 

Network 

NUMA shared 
memory across the 
sockets in a node Multiple sockets in a node 

Distributed memory cluster of 
multi-socket nodes 

Socket 
Interconnect 

Within a node: cache coherent, mix 
of UMA and NUMA shared memory!



NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Programming Approaches!

•  Thread-based approaches!
-  Posix threads (low level)!
-  OpenMP (de-facto standard)!
-  Intel Thread Building Block!

•  Task-based approaches!
-  Intel Cilk++!
-  OpenMP 3.0!
-  Grand Central Dispatch from Apple!

•  Others!
-  Global arrays!
-  Compiler auto-parallelization!

6 



NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

What is OpenMP?!

•  A standard API to support shared-memory multiprocessing 
programming!
-  Compiler directives and library routines for C/C++ and Fortran!
-  Specification defined and maintained by the OpenMP Architecture 

Review Board!
•  OpenMP 1.0 released in October 1997 for Fortran, 1998 for C/C++!
•  Latest 3.1 released in July 2011 !

-  Implemented and supported by many compiler vendors!
•  (Intel, PGI, IBM, Oracle, GCC, etc.)!

7 

www.openmp.org 



NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Compiler Directives!

•  Special #pragma in C/C++, special comments in Fortran!
•  Often only enabled by a special compiler flag!
•  Program may be run sequentially when directives are ignored!
 !

•  Examples of compiler directives!

8 

#pragma omp parallel for 
  for (i = 0; i < n; i++) 
    a[i] = b[i] + c[i]; 
!
!

C/C++ 
!$omp parallel do 
  do i = 1, n 
    a(i) = b(i) + c(i) 
  end do 
!$omp end parallel do!

Fortran 

Compile with “-openmp” (Intel compilers) to enable the compiler 
directives, otherwise they are treated as comments and the loop is 
run sequentially. 



NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Advantages of OpenMP!

•  Directive-based approach!
-  Possible to write sequentially consistent code!
-  Easier maintenance!

•  Global view of application memory space!
-  Relatively faster program development!

•  Incremental parallelization!
-  Piecemeal code development!
-  Easier to program and debug!

•  When mixed with MPI!
-  Maps well with multicore hybrid architectures!

9 



NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Major Components!

•  OpenMP thread!
-  Execution entity with a stack and its private memory!
-  Dynamically created and managed by the OpenMP runtime library!
-  Access to shared memory!

•  Language components!
-  Fork-join model for structured programming!
-  Worksharing constructs for work distribution!
-  Data sharing attributes!
-  Synchronization primitives!

•  Runtime library routines!
•  Environment variables!

10 

Shared 
Memory 

T 

private 

T 

private 

T 

private 

T 

private 



NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Execution Model!

•  Fork-join model!
-  Program starts with a single (master) thread!
-  Multiple threads are forked by the master thread at a parallel construct!

•  The master thread is part of the new team of threads!
-  Threads perform work in the parallel region!

•  Worksharing constructs distribute work among threads!
•  Threads may be synchronized with synchronization constructs!

-  Threads join at the end of the parallel region and the master thread 
continues!

11 

Master 
Thread 

Thread 0 

Thread 1 

Master 
Thread 

Thread 0 

Thread 3 

Master 
Thread 

Thread 2 

Master 
Thread 

Thread 0 

Thread 1 

Thread 2 

Thread 1 

Parallel 
Region 1 

Parallel 
Region 2 Parallel 

Region 3 



NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Parallel Construct!

•  The fundamental construct to start parallel execution!
-  Invocation of a team of threads!
-  Code executed redundantly by every thread until a worksharing 

construct is encountered!
-  Number of threads controlled via!

•  The OMP_NUM_THREADS environment variable!
•  A call to omp_set_num_threads(), or!
•  The num_threads clause!

12 

omp_set_num_threads(4); 
#pragma omp parallel private(myid) 
{ 
   myid = omp_get_thread_num(); 
   printf(“myid is %d\n”, myid); 
} 



NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Worksharing Construct!

•  The construct to distribute work among threads!
-  for (or do): used to split up loop iterations among the threads!

-  sections: assigning consecutive but independent code blocks to 
different threads (can be used to specify task parallelism)!
•  Each code block is indicated by the section directive!

13 

#pragma omp for 
  for (i=0; i<n; i++) a[i] = b[i] + c[i]; 

#pragma omp sections 
{ #pragma omp section 
  work1(); 
  #pragma omp section 
  work2(); 
} 



NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Worksharing Construct (cont.)!

-  single: specifying a code block executed by only one thread!

•  There is an implicit barrier at the end of a worksharing 
construct!
-  But can be suppressed with the “nowait” clause!

•  Master construct!
-  code block executed by the master thread only, no barrier wait!

14 

#pragma omp single 
  s = 0; 

#pragma omp for nowait 
  for (i=0; i<n; i++) a[i] = b[i] + c[i]; 
#pragma omp for 
  for (i=0; i<n; i++) d[i] = e[i] + f[i]; 

“nowait” suppresses 
the barrier at the end 
of the first for loop 



NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Loop Scheduling!

•  Clause to define how loop iterations are distributed among 
threads of the team!

!
•  Loop scheduling kinds!
-  static: for balanced workload, lowest overhead!

•  Default for most compilers!
-  dynamic: for unbalanced loop iterations!
-  guided: for special monotonically increasing or decreasing workload!
-  auto: compiler determines at runtime!

15 

#pragma omp for schedule(static) 
  for (i=0; i<n; i++) a[i] = b[i] + c[i]; 



NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Data Sharing!

•  Accessibility of variables by threads!
-  shared: variable is shared by all threads in a team!
-  private: variable is private to each thread !
-  By default, variables are shared!

•  With some exceptions, such as, loop variable is private!

•  Specifying data sharing attribute in a parallel region or 
worksharing construct!
-  shared clause: for variables shared by threads!
-  private clause: for variables private to each thread!
-  reduction clause: combining private copies of a variable to the shared 

copy by an operator. Reduced final value is only guaranteed at a barrier.!

16 



NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Data Sharing (cont.)!

•  An example!

•  Threadprivate directive!
-  Special storage for global variables, private to each thread!
-  Specified at the variable declaration, valid throughout the program!

17 

s = 0.0; 
#pragma omp parallel for private(i,b) \ 
    shared(a) reduction(+:s) 
  for (i = 0; i < n; i++) { 
     b = a[i] * a[i]; 
     s += b; 
  } 
printf(“sum = %g\n”, s); 

static double c1, c2; 
#pragma omp threadprivate(c1,c2) 

“+” is a reduction 
operator 



NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Synchronization!

•  Barrier: wait until all of threads of a team have reached this 
point before continuing!
-  Barrier construct specifies an explicit barrier!
-  A worksharing construct has an implicit barrier at the end!

•  Critical construct!
-  Code block executed by only one thread at a time, e.g., allows multiple 

threads to update shared data!

18 

#pragma omp critical 
{ 
  s = s + s_local; 
} 
#pragma omp barrier 
printf(“sum = %g\n”, s); 

Ensure one thread 
updates the shared 
variable “s” at a time 

All threads have done 
the update before the 
result is printed 



NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Synchronization (cont.)!

•  Atomic construct!
-  Update a shared variable atomically, can be more efficient than the 

critical construct if there is hardware support!
-  Only valid for scalar variable and a limited set of operations (+,*,-,…)!

-  Other forms are also available:!
•  “atomic read”, “atomic write”, “atomic capture”!

•  Locks!
-  Similarly to critical but provided by the library routines and more flexible!

19 

#pragma omp atomic 
  s = s + s_local; 
#pragma omp barrier 
printf(“sum = %g\n”, s); 



NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Code Example: Sum of Squares!

20 

 
#include <omp.h> 
long int sum = 0, loc_sum; 
int thread_id;    
#pragma omp parallel private(thread_id, loc_sum)   
{    
   loc_sum = 0; 
   thread_id = omp_get_thread_num();      
   #pragma omp for schedule(static)  
   for(i = 0; i < N; i++)      
   {  
        loc_sum = loc_sum + i * i;       
   }     
   printf(”Thread %d: loc_sum = %ld\n", thread_id, loc_sum); 
   #pragma omp critical     
   sum = sum + loc_sum;   
}  
printf(”sum = %ld\n",sum); 
 

Forks off the threads and starts the 
parallel execution; declares thread_id 
and loc_sum private 

Each thread 
retrieves its own id 

Each thread prints its 
id and local sum 

Threads cooperate to update 
the shared variable one by one 

Master thread prints result 

Worksharing construct 
distributes the work 

Needed for 
runtime routines 



NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Use of OpenMP on Pleiades!

•  Basic steps!
-  Select a compiler: !
module load comp-intel/11.1.072!

-  Compile codes with flags that enable OpenMP!
icc -o s1.x -O3 -openmp squares.c!

-  Set the number of threads to be used!
setenv OMP_NUM_THREADS 8!

-  Run the executable!
./s1.x!

•  For details see!
http://www.nas.nasa.gov/hecc/support/kb/With-OpenMP_103.html!

21 



NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Hybrid MPI + OpenMP!

•  The hybrid model!
-  OpenMP works in the memory space of each MPI process!

•  Shared memory within each MPI process but distributed memory across MPI 
processes!

•  Advantages of the hybrid model!
-  Maps well to many hardware architectures, including Pleiades!

•  MPI for communication between distributed-memory nodes!
•  OpenMP for shared-memory parallelism with a node!

-  Can achieve good scalability when not possible with pure MPI!
-  A hybrid code may consume less memory than a pure MPI code!

22 



NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Memory Usage of Hybrid Codes!

23 

8

16

32

64

128

256

512

1024

M
em

or
y 

U
sa

ge
  (

M
B)

1 2 4 8 16 32 64 128 256
Number of MPI Processes

app data arrays

 OMP=1
 OMP=2
 OMP=4
 OMP=8

a)  Per Process, SP-MZ Class C

4

8

16

32

64

128

1 2 4 8
Number of OpenMP Threads per Process

# cores
 8
 16
 32
 64
 128
 256
 512
 1K
 2K

b)  Per Core, SP-MZ Class C

The SP-MZ benchmark on the SGI Altix ICE 

Difference can be 
more than a factor of 2 



NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Hybrid Programming!

•  Approaches!
-  Common approach!

•  MPI for parallelism at coarser level, OpenMP at finer level!
•  No MPI calls inside OpenMP parallel regions!

-  Mixed approach!
•  MPI routines may be called inside OpenMP parallel regions !
•  Requires the MPI library to be thread-safe (MPI_THREAD_MULTIPLE)!

•  Program development!
-  MPI and OpenMP can be developed separately!

24 



NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Hybrid Code Example: Computing Pi!

25 

include “mpif.h” 
integer myid,numprocs,ierr,n,i 
real(8) h,sum,mypi,pi 
call MPI_Comm_rank(MPI_COMM_WORLD,myid,ierr) 
call MPI_Comm_size(MPI_COMM_WORLD,numprocs,ierr) 
n = 100000 
h = 1.0d0/n 
sum = 0.0d0 
!$omp parallel do private(x) reduction(+:sum) 
do i = myid+1, n, numprocs 
   x = h * (i – 0.5d0) 
   sum = sum + 4.0d0 / (1.0d0 + x * x) 
end do 
mypi = h * sum 
call MPI_Reduce(mypi,pi,1,MPI_REAL8,MPI_SUM,    & 
                           0,MPI_COMM_WORLD,ierr) 
if (myid.eq.0) print *,”pi is “,pi 

Get rank and size of 
MPI processes 

Reduce the final result 
from all MPI processes 

Rank 0 prints result 

Use OpenMP to 
compute partial sum 



NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Use of MPI + OpenMP on Pleiades!

•  Basic steps!
-  Select a compiler and an MPI library: !
module load comp-intel/11.1.072 mpi-sgi/mpt.2.06r6!

-  Compile codes with flags that enable OpenMP and link with MPI library!
ifort -o s2.x -O3 -openmp pi_hybrid.f90 -lmpi!

-  Set thread and process binding flags (for performance reason)!
setenv MPI_DSM_DISTRIBUTE!

setenv MPI_OPENMP_INTEROP !
-  Set the number of threads to be used!
setenv OMP_NUM_THREADS 4!

-  Run the executable (with 2 MPI processes, 4 OpenMP threads/process)!
mpiexec -np 2 ./s2.x!

•  For details see!
http://www.nas.nasa.gov/hecc/support/kb/52/!

26 



NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

OpenMP Performance Issues!

•  Why is my OpenMP code not scaling? Possible issues:!
-  Overhead of OpenMP constructs!
-  Granularity of work units!
-  Remote data access and NUMA effect!
-  Load imbalance!
-  False sharing of cache!
-  Poor resource utilization!

•  We will discuss these issues and possible solutions together 
with other advanced OpenMP topics in the next webinar!

27 



NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

References!

•  OpenMP specifications!
-  www.openmp.org/wp/openmp-specifications/!

•  Resources!
-  www.openmp.org/wp/resources/!
-  www.compunity.org/!

•  Benchmarks!
-  OpenMP Microbenchmarks from EPCC  

(www.epcc.ed.ac.uk/research/openmpbench)!
-  NAS Parallel Benchmarks  

(www.nas.nasa.gov/publications/npb.html)!
•  Porting applications to Pleiades!
-  www.nas.nasa.gov/hecc/support/kb/52/!
-  www.nas.nasa.gov/hecc/support/kb/60/!

28 


